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A New Estimation Theory for Sample Surveys, II 

H. 0. Hartley and J. N. K. Rao 

Texas A & M University 

1. Introduction. 

This paper is a sequel to an earlier one (Hartley and Rao, 1968) on the 

same topic. Accordingly, it will be necessary to briefly recall the basic re- 

sults of the earlier paper and relate that paper to the present one. Our first 

paper was predominantly concerned with slrple random sampling (with or without 

replacement) from a finite population. In the present paper we are concerned 

with examining the relation of our findings to the more complex sampling pro- 

cedures such as unequal probability sampling as well as stratified and multi- 

stage sampling. 

The basic feature of our theory was a special parametrisation of a finite 

population of N units with k characteristics attached to each unit. Denote by 

y. the k-vector attached to the i-th unit. V7e assume that all elements of the 

y. are measured on discrete scales and that only a finite set of T measurement 

vectors y. (t = 1, 2,.-,.,T) are possible for the y.. Denote then by 

N, = no, of units in the population having y. tt 

satisfying the conditions 

N. > 0 and Z N. = N. 
t      tsl t 

(1) 

(2) 

Henceforth, sums and products for t are over 1, 2,,,,T. 

The parameters 1L»..,N_ completely describe any finite population. The 

number T is usually large although sometimes occasions arise when T is small 

u^a^oawaataa  '"■•'■• •'"•■'• --- 
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or moderate and the estimation of the N. is of intrinsic interest, as for 

example when the N. represent a frequency distribution such as the number of 

households in the Community comprising t persons. However, in most cases we 

shall be concerned with the estimation of a few simple parametric functions 

such as the pwulation moments and not with the separate estimation of the 

excessively large number of parameters N.. 

Finite population sampling will normally consist of (a) the sample design, 

i.e., the procedure of drawing a sample of n distinct units (where n may be 

fixed or random) and with measuring the y^ for these units, (b) the use of 

the measured y, to compute estimators of the population parameters. 

In our previous paper we restricted (a) to simple random sampling and we 

confined the computation of estimators (b) to what we termed 'scale-load' 

estimators. These were defined as mathematical functions of the scale vectors 

y, and of their  sample  loads  (frequencies) n, = no, of units in the sample 

having y.. Thus any identifying labels, i, that may be attached to the units 

may or may not be used for the implementation of the sample design; however, 

labels are not directly used in the computation of the estimators. Neverthe- 

less, in situations where the labels, i, are observable characteristics of the 

units and are considered informative observables, the labels may be adjoined 

to the vectors y. as a  (k + l)-th component. 

We were able to show that within the class of 'scale-load' estimators 

many of the estimators in current use possess interesting optimality properties 

(unbiased minimum vari- 
in simple random sampling. Specifically the estimators are either UMV or  ance) 

maximum likelihood estimators or both. Some of these results ere briefly re- 

stated in Section 2, In the remaining sections of the present paper we are 

itfi«i««iiiwgiiiiaiiiiiiM>M«Mm—nwi'1 nmm» 
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concerned with the role these results play in the more conplex sampling proce- 

dures. Briefly our findings are: (l) The above parametrization of finite 

populations will continue to yield useful likelihood formulations for sampling 

designs providing maxiratm likelihood and Bayesian estimation procedures, UMV 

property will be the exception rather than the rule,(2) We consider that iden- 

tifying labels of primary units (or all but the last stage units) will often 

be available as well as informative. There are, however, situations in which 

higher stage units are not labelled as is the case, for example, for certain 

subsets of machine parts produced in bulk, the water supply of water works 

produced during certain time periods,etc. Certain situations where labels of 

higher stage units are not informative also exist, for example identifiable 

subsets of certain lists. Both 'scale-load* and label-dependent estimators 

are therefore required. As would be expected, there is usually no UMV estimator 
I 

in the class of label-dependent estimators. '3) A particular problem arises 

I 
when label dependence of estimators is used in conjunction with Bayesian concepts 

< 

and separate prior distributions are allowed for the individually identifiable 

units. The resulting posterior distributions and hence Bayesian inferences do 

not depend on the survey design which in the frame work of Bayesian theory be- 

comes a randomization procedure Irrelevant  in making posterior inferences. 

However, the absurd result that Bayesian theory leads to when applied to simple 

sampling or ultmate-stage unit sampling (Godambe, 1966) is perhaps our strongest 

point in favor of examining estimators that do not depend on the labels of the 

ultimate-stage units. 

2, Simple random sampling. 

If a simple random sample of fixed size n is drawn without replacement 

aw—r«Bfc «mirim h, wW 
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fl-om the population of N units, the likelihood of the nt is given by 

Ld^,...,^) = D^)/© (3) 
t' 

e 

v/here n. > 0 and En. = n. We confine ourselves here to the case of a single 

character y attached to the units (i.e., k = l). In our previous paper we have 

showi that any function of the n. is an UMV estimator of its expectation. 

Specifically some of the more important parametric functions and their UMV esti- 

mators are given below: 

Parametric function        UMV estimator 

Nt/ij nt/n 

ix; = rhn^l m' = nhfrjl (h) 

2      1 N(n-l)     2      1 

Notice that the estimators do not depend on T or the non-observed y,. When N/n 

is an integer, n^/n and m* are also the maximum iikelihocd estimators (see the 

Appendix), When N/n is not integral, the maximization of (3) over the integral 

grid N. can be achieved by the algorithm given in the Appendix; however, since 

UMV estimators exist, the maximum likelihood es-Hjnators may not have particular 

merit for small samples. The possibility of using maximum likelihood estimators 

of the N. when T is small and the N, are parameters of interest is being exam- 

ined by a Monte Carxo study. 

Turning now to Bayesian estimation, we have used in our previous paper 

the mathematically convenient prior distribution suggested by Hoadley (1968) 

and given by 

(N + v - 1)1 
CP(N1,...,NT) :• n—L—i—— , V o.       (5) 

Ntl(vt - 1)1 

•M »»HHartwu-Hw MMMLiawsnMwmi KtHKMe'H 
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a» •Ba.es e^to,. rf ,. is ^ ^^ ^^ ^ ^ ^ ^ ^ ^ 

vhere 

and 

^"p-d-lKW^i-,^*!^ 

w = n/(n + v), v = % Zv. 

M; = v-^. 

(6) 

(7) 

(8) 

It ihould be noted that the estimator (6) only requires tbe knowledge of 

M* (the prior mean of jx') and VJ, i.e., in the case of r = 1 the knowledge only 

of the prior mean M,' and the relative weight w of the sample and prior infor- 

mation. Moreover, although the v are akin to a prior sample frequencies, the 

posterior mean is not simply the mean of the pooled 'sample' v + n,. It duly 

recognizes the fact that, as n -♦ N, the sample mean ml  will tend to }x' and 

that the prior is ignored. 

The expected loss which the decision maker faces by chosing the 'Bajres 

estimator' is given by the posterior variance 

v'{,') = f*H^) U; + (X^M' . U + (I-W)M:}2] .   (9) r   K (n+v+1) L   äT ^r  «. r       r, J 

2 The  'Bayes estimator' of o   is given by 

EV) B iEt^M r^) + |[m' - m;2 + (l.£)(l.w)2(m^)2] .      (10) 

It should be noted that, if the prior information is solely based on a pilot 

sample, M* and v would roughly represent the r-th sample moment based on the 

pilot sample and the pilot sample size respectively. 

Turning to simple random sampling with replacement, suppose a random sample 

of fixed size m is drawn with equal probability and with replacement.  Let . 
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n denote the mmsber of distinct units in the sample and n. the number of distinct 

units having the value y. in the sample. The total likelihood is given by 

Ldl,,...,!^) =P(n) -7-S- (11) 

uhere the prcbability P(n) is a function only of m and N. For this sample de- 

sign no UMV exists, but the maximum likelihood estimator of ti* is m' = n'ui.y. ' r   r     t t 

provided N = ex least common multiple of 1, 2,..,,m (c = integer). In particular, 

the maximum likelihood estimator of the population mean n' is the sample mean 

based only on the distinct units in the sample and ii, is uniformly more efficient 

th^n the customary sample mean based on all the sample draws. With the prior 

distribution (5), the 'Bayes estimator' of M-' > the posterior variance of n' 

and the 'Bayes estimator' of o are respectively given by (6), (9) and (10), 

where n and the n. are as defined above, 
t 

3. Estimation with concomitant variables. 

In our earlier paper we have considered a situation customarily dealt with 

by ratio or regression method of estimation in which two variates y and x ere 

attached to each of the units and the population mean Y of 'target variate' y 

is to be estimated utilizing the available information about x. Assuming that 

only the population X of s is known, we have shown that an approximation to the 

maximum likelihood estimator of Y is closely related to the customary regression 

estimator, provided the sanple ^ize n is moderately large. In this section we 

extend this result to multiple concomitant variables x ,...,x , assuming that 

only the population means X ,...,X are known. We show that, for moderately 

large n, an approximation to the maximum likelihood estimator of Y is closely 

|j|l||iiyM||m||[ in 11 r ""' 
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related to the custonary multiple regression estimator. 

As before, we assume that a finite set of T distinct, known values y. are 

feasible for y  Likewise, we assume that I. distinct, known values x.. are 

feasible for x. (j = 1,..,,k). Let N.  . . denote the nuaiber of units in the 

population which have x..,,,,, x . and y. attached to them. Let n.  < + be 
•Lii   ^   * h-'hi 

the number of units in the simple random sample of size n (drawn without replace- 

ment) which have x .    x , and y attached to them. 
Xlj,..., K.X, t 

We consider only the multinomial situation in which N -. o and 

N.  . +/N- P.  . . while n is held fixed. The likelihood L is then given 

by the multinomial distribution with probabilities P.  . t. The restrictions 

on the P.  . . are given by 
V'V 

P > 0, P'i = 1 and P'Z = X (12) 

where P* is the nxl veetor of the P . ., i is the Ixn vector of I's, 

X = (X,,...,!) and Z = (x*|..|x*) where p'x* = X. (o = l,...,k). As in our 
~      X     K     ~    ~1    ~K       ~ ~0    Ü 

previous paper, it can be shown that for moderate sample sizes n the global 

maximum of the multinomial likelihood can only be attained if P.  ., +. ~ 0 for 
V 

all those variate combinations for which n. 

•i,..ikt 

i.  . . = 0, and P.  .  > 0 for 

the remainder.  Confining then the maximization to the latter P.  . , only 
V'V 

and introducing the Lagrangian multipliers X and p.* -  (M.,,...,|J., ), the maxi- 
~    1    k 

mization of log L subject to (12) is attained for P = P vhers 

^-••Vr    'k 
i • • \  r  ■» K     - >i 

?  .  _—i lLli + i2n(x  . x.)  . (Ij) 

Expanding P i = 1 to first three terms we obtain 



-8- 

n(x -X)V = H'X*'^ (lit) 
M# «W «» ********* 

•where x   = (x »...jX.) is the vector of sample means and X^X* = S* = (s* ) 

■where 

1P = n"^"ai1..i/*ji. - V(xPip - V- 

It is readily seen that the solution of (lU) is given by 

ii = n(X*
,xT1(x.X). (15) 

Now using (15) and expanding (13) to the first two terms we get 

P = i [n + X+^'X*)-
1^ - J)l (16) 

mm n L.~    ••*.«•        ~    ~  J 

>ftiere n is the Ixn vector of the n. and X   is given by y'X   = (sw>»,ssw) 

where p'y = Y and 

= n"T;...Di.      . ^(x       - X.), j = 1,..,1 
VV t   oij       0 

An improved approximation, along the lines of our previous paper, can be ob- 

tained by expanding (13) to the firso three terms. 

Using (l6), an approximation to the maximum likelihood estimator of the 

population mean Y = P'y is given by **    ** 

Y = P,ySy+ (X- ^'S^V (17) -. <-     »•«••»  ~«y 

where s* is the k-vector of the s* , The customary multiple regression 

estimator is given by 

f = y + (X - x^S^s v (18) 

where SB(S. ). s     is the k-vector of the s.    and s zw   —y oy 

s.    = s*   -  (x, - X.)(x    - X ) 
OP     OP    v J     a    P     P' 

. 
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s.- = s:„ - y(3L - xj. 
^ 

Although (17) differs slightly tram  (18), the above development clearlj shows 

that, at least in large samples, the customary multiple regression estimator 

is essentially the maximum likelihood estimator, 

k.    Stratified simple randcan sampling without replacement. 

^.1 UMV Estimator. 

Suppose there are L strata in the population with N. units in the i 

stratum (i = 1,,,,L). Denote by N.. the number of units in the population 
lb 

belonging to the i  stratum and having the measurement y-t(t = 1,..,T.) so 

that EN. = N.CEUI.. = N). A stratified simple randcan sample (o,,..,^) is 

drawn without replacement, (En. = n), and n.. denotes the number of units in x        xt 

the sample belonging to the i  stratum and having the measurement y.., 

(En  = n.). Now the likelihood of the n.. is given by 
t it   1 xt   - 

/N 

Lr ^il 
n 

'L  1 
^V'-^LT ) = n r ^T V 1 (19) 

Therefore, the n^^ are complete sufficient for the H..,. and, hence, the UMV xt it 

estimator of the population mean Y = N~ zEN.-y.. is the customary estimator 

Y = N'-^EN.-y. = N'^EN.y. (20) 
it lt *    i 1 1 

where Nit = (K./n.)n., is the UMV estimator of N... It also follows that the 

maximum likelihood estimators of the N.. and Y are the UMV estimators N.. and 
it xt 

Y respectively, when the N./n. are integral. Notice that each stratum is 

described by its separate sot of parameters, i.e., we have an additional sub- 

script i to index the strata. 
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An interesting special case occurs when the stratification is according 

to the size of the units, say x.. If we assume that x. is constant within 

strata and use the allocation proportional to total size, i.e., 

n. = n(N.x./j2f x.) = N.P. (say) where ZIP. = n, we get 

Y = irtsa^ = n'hz ^~i (a) 
it        it   i 

which is a 'Horvitz-Thompson' type estimator. 

U,2, Bayesian optimization of stratified sampling. 

Ericson (1965) has presented a solution to the problem of optimum allo- 

cation when prior information in the form of a prior distribution is available. 

He has, however, assumed: (a)N. =«, i = l,,.,L, (b) normality of the within 

stratum populations and (c) known within stratum population variances a.. 

Assuming that the within stratum population means y. have independent normal 

priors with means m. and variances v!.., he has shown that the posterior variance 

of the population mean n = Z rr.p,. is given by 

' -s K/kr * 7)] w 
1     11  o. 

i 

where n. is the known proportion of the population units falling within the 

i  stratum. Ericson has given a computational algorithm to find n. > 0 

(i = 1,..,L) such that (22) is minimized subject to the cost constraint 

Ec.n. = C (23) 

where C is the given budget. 

Recently, Draper and Guttman (1968) have relaxed the assumption (c) and 

presented a sequential allocation scheme whicn * simpler than Ericson's al- 
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gorithn. Ibey have also considered the case of unknown proportions n., Using 

our present approach, one of us (j. N. K. Bao, 1968) has given a solution which 

is free from the restrictive assumptions (b) and (c). Extension to multiple 

priors and/or multiple characteristics by the use of convex programming was 

also considered. In this section we present a complete solution by relaxing 

the assumption (a) also. 

We assume that prior information on the N.. is available in the form of 

(5) for each i and that the priors are independent. Therefore, the prior dis- 

tribution of N-.. ,.. ,NT _ is 
ll 

r   (Nlt + v    - 1)1 

L     i't Nit:(vit . i): {2k) 

vit>0'fit = vi  • 

Now, since Y = N'jJU.Y.  where Y. is the i  stratum population mean, we get 

using (6) and (9) the posterior mean of Y as 

E- (?) - TV [{l - £) Z '-j^? yit + ^ E ^ yit] (25) 
1 itll itl 

and the posterior variance of Y as 

i     r       -r 

t ni + Vi  " S   ni + Vi wJ 

(26) 

Since the posterior variance (26) depends on the to be observed sample values 

nit, we take the expectation of (26) with respect to the marginal distribution 

of the nit. It follows from Hoadley (1968) that the marginal distribution of 

the nit is given by 
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"fit ^it   ^ 

1 

L 

^lich is identical to that in the case of infinite populations with Dirichlet 

prior distributions. Iherefore, using the results of J. N. K. Rao (1968) it 

follows from (26) that the expected posterior variance of Y is 

:i N 1 111 

-i . (^ + Vh ^ [,it - k ^ .it)] 
2. (.9) 

where 

A.. ,     v..   r. .,    v., o2 

. ,         ,       ,.,   ^+ i titi 

It follows, using (9) and (10), that 

Prior variance of Y. = (~ + |-j A. (30) 
i        i 

and 
2 

Prior mean of S, = A. (31) 
11 N    ' 

where N.a? = (N. - l)S?. 
11 1 i 

Now (28) is a separable convex function in the n. and, therefore, the 

values n. which minimize (28) subject to (23) and 0 < n. ^ N. (i=l,..,L) can be 

obtained by convex programming* It is also possible to develop a sequential 

allocation procedure analogous to that of Draper and Guttman (1968). 

It is important to note that the knowledge of the complete priors is not 

2 
essential for the optimum allocation — only that of the prior mean of a. and 

prior variance of p.  is needed. If the priors are solely based on pilot samples 

within each stratum, then [(v.+i)/v.]A. and v. would roughly represent the 

pilot-sample ^nriance and the pilot sample size respectively. 

The extension of the a>ove results to multiple priors and/or multiple 

In our c- «final version ve ignored the restriction n. < N, and Ericson has 
pointed  is out, 1   ' 
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characteristics follows along the lines of J. N. K. Rao (1968) and the 

optimum allocation is obtained, by convex programming. 

5. Single-stage unequal probability sampling. 

In the preceding sections we have been ciainly concerned with sampling 

procedures in which all the units had an equal chance of selection. The 

only exception is stratified sampling (Section ^.l) in which strata allo- 

cations n. proportional to the products N.x. gave all the N. units in the 

i  size stratum an equal inclusion probability of P = n(N.x./EN.x.) which 

was varied from  ratum to stratian. While unequal probability sampling by 

'size strata1 may be satisfactory for many practical purposes, situations 

often arise in which we desire to vary the inclusion probability from unit 

to unit. However, this type of unequal probability sampling mainly arises 

in the selection of primary sampling units in multi-stage sampling which 

we discuss in Section 6. Here we confine ourselves to the (rare) situations 

where unequal probability sampling is used in 'single-stage' or 'ultimate- 

stage' sampling of units which are not necessarily identifiable in advance 

of sampling. 

As ai example of p.p.s. sampling of this kind, we may mention here the 

sampling of farm operators in Iowa counties proportional to the land acreages 

they operate. If a county map can be covered by a rectangle with dimensions 

Z by W and (z^w^ji = l,..,r(r > m) denote uniform variables with 0 < z. 

< Z and 0 < w. < W, co-ordinates (z.,w.) can be pinpointed on the map and 

the intervievier can be instructed to ascertain (in order of draw) the first 

m operators whose land acreages contain the pinpointed land marks. This 

results in p.p.s. sampling with replacement in which p. = x /X (x. = land 
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acreage of i  operator only known for sampled operators, X = total land 

acreage known in advance of sampling) where p. denotes the probability of 

selection of i  operator at a single draw. This well-known situation of 

•raultinoiEial sampling' is the only one discussed in this section. We show 

tbaz it can be reparametrized in such a way that optißality properties can 

be formulated for certain estimators. 

Let r. = y./p. and denote by r (t = 1J..,T) the set of T discrete 

scale point.» feasible for the r.. Let the score m. denote the number of 

times i  unit is included in the sample (i = 1,..,N; Da. = m). We now 
i 

classify the r. into the T groups and denote by 

.th e 

otherwise 

_ f p  if for the iu" unit r. = r, 
vit  I , it 

u 

»it = I ni 

y  if for the ith unit r. = r 
i it 

otherwise 

if for the ith unit r, = r. 

" 0  otherwise 

The multinomial distribution of scoring m multinomial scores into H 

classes with probabilities p. may then be written in the form 

L(P11, .. ,^T) = inrr.n p^ (32) 
i,t " i't 

and may be reparametrised as follows: 

P. = S p,, 
i 1 

f
piA   ^Pt

>0    / (33) 
^t = i  i if Pt  x  0 



so that 

LYit = l    ifpt>0. 
i 

Writing m.  = S0-*» we may factorivse (32) as 

I(P11>-..,PNT) = 
ro;  rr  x t t *it z.  r v 

Z a..! .^ it 
LM if i,t 

(3^) 

(35) 

Equation (35) shows that the m. are sufficient for the p since the latter 

are only involved in the marginal distribution of the m, and not in the 

conditional distribution of the m., given the m.. 

The maximum likelihood estimators of the p are given by the ratios 

ffi./m and, hence, the maximum likelihood estimator of the population total 

is given by 

y = sy. = m±t = LvtEP   = p-tpt 
1      it       t  1       t 

mt   1 1   y±^ 
Y = Er, — = - Er^Dn.. = - E -^i 

.tm  m . t. it  m. p. 
t       t 1      x   ri 

(36) 

(37) 

which is the customary unbiased estimator of Y in p.p.s. sampling with re- 

placement . 

Finally it should be noted that (35) is the likelihood for the scores 

which do not necessarily represent counts of distincts units in the population. 

However, it is possible to obtain the likelihood of the number of distinct 

units in the sample with scale ratio r which we denote by n. . The distri- 
« t 

bution of the m, is given by 

L(p,,..,pJ = 
V t 

np. (38) 
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and the conditional distribution of the n. given the m can be obtained in 

terms of the V.. troa forwila (^.3) of Kullback (1937). Finally the like- 

lihood of the n. can be obtained by smanation ox' the product (i.e., the 

Joint distribution) over m. = n, to m subject to Bn. = n. We intend to 

exaaui\e this distribution in more detail elsewhere. 

A. •-.hough only one single method of unequa.. probability sampling is 

examined in this section and although the method examined is knovn not to 

be particularly efficient, the discussion clearly indicates the possibility 

of deriving concrete likelihoods for other unequal probability sampling 

methods with the help of our technique of paraiietrisation. 

6. Tvo-stajxo sampling. 

In order to simplify the discussion we confine ourselves to tvo-stage 

sampling in which the primaries are selected with equal or unequal proba- 

bilities. Consider then a population consisting of L primary units 

i «= 1,..,L of which t will be sampled and denote by N. tne number of 

tfc 
secondary units in the i ' primary. Denote by N.. the number of units in 

X w 
+'V» 

the i  primary which have the scale value y.At  = 1,..,T.) so that 

4"Vi 

EN., = N.. Let u. = 1 if the i  primary is in the sample and zero other- 
t 
wise. Denote by P(u1,..,ur) the Joint distribution of the u. corresponding 

to the primary sampling procedure adopted and let n.. denote the number uf 

secondary units to be drawn from the i  primary if it is in the sample. 

The n. are all specified apriori for i = 1,..,L. In this paper we only 

consider equal probability sampling of secondaries without replacement. 

If we denote by n.. the number of secondaries having scale value 

y.. in the i  sampled primary, then the joint likelihood of the u. and the 

mmmm  i i- .- .i ,■:-.-..- 
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n.^ is given by 

l.(Nn... .NLTL) = P(U1. .UL) n [r CfjK'ß ' (39i 

6.1. Maxinsum likelihood estimation. 

We confine ourselves here to the case of H. = », 1 = 1,..,L. Hie 

likelihood (39) reduces to 

Uv^.. ,PLT ) = P^, .. >%) q Tirsr^ J Pit J •     M 
L i * 1 it t 

Maximisation of (^0) subject to ZJ).. =1 for i = 1,..,L leads to 
it 

p     = n +/n^    (prunary s in the sarsple) m 
while ariy values of p  are permissible for j not in the sample. The 

maximum likelihood solution will, therefore, in general not be unique. 

Furthermore, we do not have complete sufficiency here and, hence, no UMV 

estimahor exists. We have not considered here 'scale-load' estimators which 

do not depend on primary labels. 

6.2. Eayesian estimation. 

Since the complete likelihood is given by (59), the posterior distri- 

bution of the N.. is identical to that in the case of stratified sampling 

(section ^4) noting that n. c 0 is allowed for the latter. Therefore, the 

'Bayes estimator' of "I is given by (25) and it may be recast as 

.   r/  n.. n.. + v      n.  v,.   _. 

+ r
11,™ - " ¥41:" (1.2) 
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where L. and E2 respectively the summations over sampled and non-sampled 

primaries. It should be noted that we must have a prior distribution from 

each primary. If the prior distribution is solely based on pilot samples, 

this implies that the pilot sample must include at least one secondary unit 

from each primary. 

The above analysis clearly shows that the sampling procedure adopted 

for selection of the primaries is entirely irrelevant as far as a fall 

Bayesian analysis is concerned. However, if the likelihood based on a 

selected estimator is used for a (partial) Bayesian analysis based on in- 

sufficient statistics, then the posterior distribution and, hence, the 

'Bayes estimator' would depend on the sampling procedure. These are the 

two alternatives available to the Bayesian analyst and, at this stage, we 

do not wish to take sides in this issue. 
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